Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 27(5): 220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590561

RESUMO

Long-term hypertension can lead to hypertensive heart disease, which ultimately progresses to heart failure. As an angiotensin receptor blocker antihypertensive drug, allisartan can control blood pressure, and improve cardiac remodeling and cardiac dysfunction caused by hypertension. The aim of the present study was to investigate the protective effects of allisartan on the heart of spontaneously hypertensive rats (SHRs) and the underlying mechanisms. SHRs were used as an animal model of hypertensive heart disease and were treated with allisartan orally at a dose of 25 mg/kg/day. The blood pressure levels of the rats were continuously monitored, their body and heart weights were measured, and their cardiac structure and function were evaluated using echocardiography. Wheat germ agglutinin staining and Masson trichrome staining were employed to assess the morphology of the myocardial tissue. In addition, transcriptome and proteome analyses were performed using the Solexa/Illumina sequencing platform and tandem mass tag technology, respectively. Immunofluorescence co-localization was conducted to analyze Nrf2 nuclear translocation, and TUNEL was performed to detect the levels of cell apoptosis. The protein expression levels of pro-collagen I, collagen III, phosphorylated (p)-AKT, AKT, p-PI3K and PI3K, and the mRNA expression levels of Col1a1 and Col3a1 were determined by western blotting and reverse transcription-quantitative PCR, respectively. Allisartan lowered blood pressure, attenuated cardiac remodeling and improved cardiac function in SHRs. In addition, allisartan alleviated cardiomyocyte hypertrophy and cardiac fibrosis. Allisartan also significantly affected the 'pentose phosphate pathway', 'fatty acid elongation', 'valine, leucine and isoleucine degradation', 'glutathione metabolism', and 'amino sugar and nucleotide sugar metabolism' pathways in the hearts of SHRs, and upregulated the expression levels of GSTM2. Furthermore, allisartan activated the PI3K-AKT-Nrf2 signaling pathway and inhibited cardiomyocyte apoptosis. In conclusion, the present study demonstrated that allisartan can effectively control blood pressure in SHRs, and improves cardiac remodeling and cardiac dysfunction. Allisartan may also upregulate the expression levels of GSTM2 in the hearts of SHRs and significantly affect glutathione metabolism, as determined by transcriptome and proteome analyses. The cardioprotective effect of allisartan may be mediated through activation of the PI3K-AKT-Nrf2 signaling pathway, upregulation of GSTM2 expression and reduction of cardiomyocyte apoptosis in SHRs.

2.
Microbiol Spectr ; 12(4): e0391823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441474

RESUMO

The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Azitromicina/farmacologia , Colistina/farmacologia , Regulação para Cima , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Porinas/genética , Porinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/metabolismo
3.
mSphere ; 8(5): e0023423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747188

RESUMO

The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.


Assuntos
Colistina , Rafoxanida , Humanos , Animais , Suínos , Colistina/farmacologia , Rafoxanida/farmacologia , Klebsiella pneumoniae , Espécies Reativas de Oxigênio , Cromossomos , Trifosfato de Adenosina
4.
Microbiol Spectr ; 11(4): e0053023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358428

RESUMO

With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.


Assuntos
Agmatina , Colistina , Colistina/farmacologia , Salmonella typhimurium/genética , Transcriptoma , Agmatina/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Metaboloma , Testes de Sensibilidade Microbiana
5.
Res Microbiol ; 174(7): 104078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149078

RESUMO

Aim of this study was to investigate the prevalence and genetic environment of the oxazolidinone resistance gene optrA in Streptococcus suis (S. suis) isolates from diseased pigs in China. A total of 178 S. suis isolates were screened for the optrA gene by PCR. The phenotypes and genotypes of optrA-positive isolates were investigated by antimicrobial susceptibility testing, core genome Multilocus Sequence Typing (cgMLST), capsular serotypes determination and whole-genome sequencing (WGS). Fifty-one (28.7%) S. suis isolates were positive for optrA. Phylogenetic analysis indicated that the spread of the optrA among S. suis isolates was primarily due to horizontal transfer. Analysis of S. suis serotypes from diseased pigs revealed substantial diversity. The genetic environment of optrA was complex and diverse and could be divided into 12 different types. Interestingly, we identified a novel integrative and conjugative element ICESsu988S, carrying optrA and erm(T) genes. This is to the best of our knowledge the first report of the optrA and erm(T) co-located on an ICE in S. suis. Our results showed a high prevalence of optrA gene in S. suis isolates in China. Further research is needed to evaluate the importance of ICEs, as they horizontally propagate important clinical resistance genes.


Assuntos
Oxazolidinonas , Streptococcus suis , Animais , Suínos , Streptococcus suis/genética , Filogenia , Prevalência , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
6.
Poult Sci ; 102(2): 102346, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493546

RESUMO

The emergence and rapid spread of multidrug resistant (MDR) Gram-negative bacteria have posed a serious threat to global health and security. Because of the time-consuming, high cost and high risk of developing new antibiotics, a significant method is to use antibiotic adjuvants to revitalize the existing antibiotics. The purpose of the study is to research the traditional Chinese medicine baicalin with the function of inhibiting the efflux pump and EDTA whether their single or combination can increase the activity of colistin against colistin-resistant Salmonella in vitro and in vivo, and to explore its molecular mechanisms. In vitro antibacterial experiments, we have observed that baicalin and EDTA alone could enhance the antibacterial activity of colistin. At the same time, the combination of baicalin and EDTA also showed a stronger synergistic effect on colistin, reversing the colistin resistance of all Salmonella strains. Molecular docking and RT-PCR results showed that the combination of baicalin and EDTA not only affected the expression of mcr-1, but also was an effective inhibitor of MCR-1. In-depth synergistic mechanism analysis revealed that baicalin and EDTA enhanced colistin activity through multiple pathways, including accelerating the tricarboxylic acid cycle (TCA cycle), inhibiting the bacterial antioxidant system and lipopolysaccharide (LPS) modification, depriving multidrug efflux pump functions and attenuating bacterial virulence. In addition, the combinational therapy of colistin, baicalin and EDTA displayed an obvious reduction in bacterial loads cfus of liver and spleen compared with monotherapy and 2-drug combination therapy. In conclusion, our study indicates that the combination of baicalin and EDTA as a novel colistin adjuvant can provide a reliable basis for formulating the therapeutic regimen for colistin resistant bacterial infection.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Ácido Edético/farmacologia , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana/veterinária , Simulação de Acoplamento Molecular , Salmonella
7.
Front Vet Sci ; 9: 986824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061114

RESUMO

Integrative conjugative elements (ICEs) are important carriers for disseminating resistance genes. We have previously reported a novel element ICEHpa1 carrying seven antibiotic resistance genes, which could be self-transmissible relying on the novel T4SS. To identify novel ICEHpa1 variants from 211 strains and novel T4SS encoded in ICEHpa1, and to explore the relationships in these ICEs, four complete sequences of ICEs were identified by WGS analysis and antimicrobial susceptibility testing was determined by broth microdilution. In addition, a comparative analysis of these ICEs was conducted with bioinformatic tools, and the transfer abilities of these ICEs were confirmed by conjugation. Four ICEHpa1 variants ICEGpa1818, ICEGpa1808, ICEGpa1807, and ICEGpa1815 with different resistance gene profiles were characterized, and their hosts showed different resistance spectrums. All ICEs shared the same backbone and were inserted into the tRNALeu site, and all resistance regions were inserted into the same target site between the accessory and integration regions. This study analyzed complete sequences of ICEs from the ICEHpa1 family and identified novel T4SS and insertion element ISGpa2. Diverse resistance genes extensively exist in these ICEs, serving as a reservoir for resistance genes and facilitating their dissemination.

8.
Res Vet Sci ; 150: 98-106, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35809419

RESUMO

CpxAR is a global regulatory protein and has important roles in plasmid mating. However, except for traJ, the regulatory effect of CpxAR on other tra genes is unclear. The aim of this study was to explore the effects of CpxAR on conjugative transfer of the epidemic plasmid pEC011 (IncFII replicon) in Escherichia coli. The plasmid mating frequencies were significantly higher for the single deletion mutant strain FΔcpxR than for the parental strain F25922. Additionally, expression levels of traM, traJ and traY in FΔcpxR were significantly higher than those in F25922. Further investigations revealed that His6-CpxR protein could directly bind to the traM, traJ and traY promoter regions with the binding sites of 5'-TTTACATT-3' (PM), 5'-ATAAGAAT-3' (PJ), and 5'-AATTTTAT-3' (PY), respectively. Taken together, our results demonstrate that CpxAR can downregulate the expression of traM, traJ and traY by directly binding to the CpxR box-like sites of promoters, thus significantly reducing the mating rates of IncFII replicon plasmid pEC011.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator F , Plasmídeos/genética , Regiões Promotoras Genéticas , Replicon
9.
Biomed Pharmacother ; 149: 112873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35349932

RESUMO

It has been recognized that colistin resistance is a growing problem that seriously impairs the clinical efficacy of colistin against bacterial infections. One strategy that has been proven to have therapeutic effect is to overcome the widespread emergence of antibiotic-resistant pathogens by combining existing antibiotics with promising non-antibiotic agents. In this work, antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of the combination. The molecular mechanisms of tetrandrine in combination with colistin were analyzed using fluorometric assay and Real-time PCR. To predict possible interactions between tetrandrine and MCR-1, molecular docking assay was taken. Finally, we evaluated the in vivo efficacy of tetrandrine in combination with colistin against MCR-positive Salmonella. Overall, the combination of tetrandrine and colistin showed significant synergistic activity. In-depth mechanistic analysis showed that the combination of tetrandrine with colistin enhances the membrane-damaging ability of colistin, undermines the functions of proton motive force (PMF) and efflux pumps in MCR-positive bacteria. The results of molecular docking and RT-PCR analyses showed that tetrandrine not only affects the expression of mcr-1 but is also an effective MCR-1 inhibitor. Compared with colistin monotherapy, the combination of tetrandrine with colistin significantly reduced the bacterial load in vivo. Our findings demonstrated that tetrandrine serves as a potential colistin adjuvant against MCR-positive Salmonella.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Benzilisoquinolinas , Colistina/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Salmonella/genética , Salmonella/metabolismo
10.
Microbiol Spectr ; 10(1): e0196321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170998

RESUMO

Streptococcus suis strain 1112S was isolated from a diseased pig in a feedlot from Henan, China, in 2019. The isolate harbored a linezolid resistance gene optrA. WGS data revealed that the optrA gene was associated with a single copy ETAf ISS1S, in tandem with erm(B) and tet(O), located in a novel 72,587 bp integrative and conjugative element (ICE). Notably, this novel element, designated ICESsu1112S, also carried a novel bacitracin resistance locus. ICESsu1112S could be excised from chromosome and transferred to the recipient strain S. suis P1/7 with a frequency of 5.9 × 10-6 transconjugants per donor cell. This study provided the first description of the coexistence of optrA and a novel bacitracin locus on a multiple antibiotic resistant ICE and highlighted that ICE were major vehicle and contribute to the potential transfer of clinically relevant antibiotic resistance genes. IMPORTANCE Antimicrobial resistance (AMR) caused by the imprudent use of antimicrobials has become a global problem, which poses a serious threat to treatment of S. suis infection in pigs and humans. Importantly, AMR genes can horizontally spread among commensal organisms and pathogenic microbiota, thereby accelerating the dissemination of AMR determinants. These transfers are mainly mediated by mobile genetic elements, including ICEs. In S. suis, ICEs are the major vehicles that contribute to the natural transfers of AMR genes among different bacterial pathogens. However, ICEs that carry optrA and bacitracin resistance locus are rarely investigated in S. suis isolates. Here, we investigated a S. suis isolate carrying an optrA and a novel bacitracin resistance locus, which were co-located on a novel multiple antibiotic resistant ICESsu1112S. Our study suggests that more research is needed to access the real significance of ICEs that horizontally spread clinical important resistance genes.


Assuntos
Bacitracina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Linezolida/farmacologia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Animais , Antibacterianos/farmacologia , China , Conjugação Genética , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Infecções Estreptocócicas , Streptococcus suis/isolamento & purificação , Suínos
11.
J Antimicrob Chemother ; 76(12): 3168-3174, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34499729

RESUMO

BACKGROUND: The increasing use of colistin causes a serious breach in our last line of defence against MDR Gram-negative pathogens. Our previous study showed that CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. OBJECTIVES: To identify the mechanism of CpxAR and efflux pumps that synergistically enhance the susceptibility of S. Typhimurium to colistin. METHODS: A series of cpxR- and tolC-deleted mutants and a cpxR-complemented strain from a multidrug-susceptible standard strain of S. Typhimurium (JS) were generated in our previous study. Herein, we investigated the susceptibility of these strains to colistin through the broth microdilution method, time-kill curves and survival assays. Growth curves were measured by OD600 in LB broth, tryptone-soy broth (TSB) and M9-glucose (0.2%) minimal media. Finally, molecular mechanisms underlying the mode of action were elucidated by transcriptomic analysis. RESULTS: We found that in contrast to JS (0.8 mg/L), the MIC of colistin for JSΔtolC::kan showed a 16-fold decrease (0.05 mg/L). Notably, JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were associated with a 256-fold decrease (0.0031 mg/L) compared with JS. Growth curves identified that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR displayed a markedly lower growth rate and poorer adaptability. In addition, time-kill curves and survival assays showed that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were more susceptible to colistin. Lastly, double deletion of cpxR and tolC enhanced oxidative damage through promoting oxidative phosphorylation, the tricarboxylic acid (TCA) cycle and trimethylamine N-oxide (TMAO) respiration. CONCLUSIONS: Our findings revealed that double deletion of cpxR and tolC significantly increases the susceptibility of S. Typhimurium to colistin.


Assuntos
Colistina , Salmonella typhimurium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Proteínas de Membrana Transportadoras/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sorogrupo
12.
Front Pharmacol ; 11: 1255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922293

RESUMO

BACKGROUND: Metabolic remodeling plays a vital role in the development of heart failure. The trimetazidine can optimize fatty acid and glucose oxidation via inhibition of long-chain 3-ketoacyl CoA thiolase in the heart. So, trimetazidine commonly used in cardiovascular therapy as a myocardial metabolic drug. This study was conducted to assess the effects and mechanisms of trimetazidine on ketone body metabolism in heart failure rats. METHODS: A rat model of heart failure was established by continuous subcutaneous injection of isoproterenol in 10 mg/kg/d. We examined body weight, heart weight index, and tested B-type natriuretic peptide by kit. We detected the structure and function of the heart. Hematoxylin-eosin staining and Masson's trichrome staining was performed to assess myocardial tissue morphology. To evaluate apoptosis, we used Tunel staining. Metabolic substrate contents of glucose, free fatty acid, ketone bodies, lactic acid, and pyruvate and ATP levels in myocardial tissues were measured with the corresponding kit. We detected the levels of protein expressions related to myocardial substrate uptake and utilization by Western blot. RESULTS: Trimetazidine remarkably reduced the heart weight index and B-type natriuretic peptide levels. Besides, trimetazidine increased the level of blood pressure and decreased heart rate. Moreover, trimetazidine inhibited decreases in left ventricular ejection fraction and left ventricular fractional shortening. Further, trimetazidine decreased the levels of collagen volume fraction and promoted ATP production in myocardial tissues. Trimetazidine also reduced the levels of free fatty acid, ketone bodies, lactic acid, and increased glucose and pyruvate levels in myocardial tissues. Furthermore, trimetazidine markedly inhibited apoptosis. More importantly, the protein expression levels related to myocardial substrate uptake and utilization increased dramatically in the trimetazidine group. In particular, the protein expressions related to ketone body utilization were prominent. CONCLUSIONS: Trimetazidine could attenuate metabolic remodeling and improve cardiac function in heart failure rats. The potential mechanism for the cardioprotective effect of trimetazidine may be highly associated with its regulation of adenosine monophosphate-activated protein kinase, and peroxisome proliferator activated receptor α expressions. Along with the regulation, myocardial substrate utilization was improved, especially the utilization of ketone bodies.

13.
J Med Microbiol ; 69(8): 1089-1094, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32692646

RESUMO

Introduction. The bla CTX-M-3 gene has rarely been reported in Morganella morganii strains and its genetic environment has not yet been investigated.Aim. To identify the bla CTX-M-3 gene in M. morganii isolated from swine and characterize its genetic environment.Methodology. A M. morganii isolate (named MM1L5) from a deceased swine was identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing. The bla genes were detected and then the genetic location and environment of bla CTX-M-3 were investigated by Southern blot and PCR mapping, respectively. The M. morganii bla CTX-M-3 gene was cloned and expressed in Escherichia coli.Results. Isolate MM1L5 harboured the bla CTX-M-3 and bla TEM-1 genes. The bla CTX-M-3 gene, located on the chromosome, was co-carried with an IS26 and bla TEM-1 gene by a novel 6361 bp IS26-flanked composite transposon, designated Tn6741. This transposon consisted of a novel bla CTX-M-3-containing module, IS26-ΔISEcp1-bla CTX-M-3-Δorf477-IS26 (named Tn6710), and a bla TEM-1-containing module, IS26-Δorf477-bla TEM-1-tnpR-IS26, differing from previous reports. Phylogenetic analysis showed a significant variation based on the sequence of Tn6741, as compared to those of other related transposons. Interestingly, although the cloned bla CTX-M-3 gene could confer resistance to ceftiofur, cefquinome, ceftriaxone and cefotaxime, one amino acid substitution (Ile-142-Thr) resulted in a significant reduction of resistance to these antimicrobials.Conclusion. This is the first time that bla CTX-M-3 has been identified on a chromosome from a M. morganii isolate. Furthermore, the bla CTX-M-3 gene was located with an IS26 element and bla TEM-1 gene on a novel IS26-flanked composite transposon, Tn6741, suggesting that Tn6741 might act as a reservoir for the bla CTX-M-3 and bla TEM-1 genes and may become an important vehicle for their dissemination among M. morganii.


Assuntos
Elementos de DNA Transponíveis/genética , Morganella morganii/genética , beta-Lactamases/genética , Animais , Anti-Infecciosos/farmacologia , Sequência de Bases , Clonagem Molecular , Morganella morganii/classificação , Morganella morganii/efeitos dos fármacos , Filogenia , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos
14.
J Antimicrob Chemother ; 75(10): 2780-2786, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32620947

RESUMO

BACKGROUND: The two-component signalling systems PmrAB and PhoPQ of Salmonella have been extensively studied with regard to colistin resistance. We previously showed that overexpressed CpxR could significantly increase the colistin susceptibility (16-fold compared with the WT strain) of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) through PmrAB and PhoPQ. OBJECTIVES: To identify the potential target genes of CpxR in PmrAB- and PhoPQ-related signalling pathways. METHODS: His6-CpxR was prokaryotically expressed and purified by Ni-NTA resin affinity chromatography. ß-Galactosidase activity assays were conducted to investigate whether CpxR could regulate the promoters of colistin resistance-related genes (CRRGs). Electrophoretic mobility shift assays (EMSAs) were used to further detect His6-CpxR complexes with promoters of CRRGs. RESULTS: We demonstrated for the first time (to the best of our knowledge) that CpxR and the AcrAB-TolC efflux pump have reciprocal effects on CRRG transcription. Additionally, CpxR could regulate the colistin susceptibility of Salmonella Typhimurium by binding directly to the promoters of phoPQ, pmrC, pmrH and pmrD at the CpxR box-like sequences or indirectly through other regulators including pmrAB and mgrB. CONCLUSIONS: CpxR could regulate the colistin susceptibility of Salmonella Typhimurium by a multitarget mechanism.


Assuntos
Proteínas de Bactérias , Colistina , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sorogrupo
15.
J Antimicrob Chemother ; 73(11): 3016-3024, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107570

RESUMO

Background: Colistin has been used as the last therapeutic resort for treatment of MDR Gram-negative bacteria infections in humans. The two-component system CpxAR has been reported to contribute to the MDR of bacteria. There may be a more complex network mediated by CpxAR contributing to colistin susceptibility than previously understood. Methods: A series of AcrB or CpxR deletion mutants of a multidrug-susceptible standard strain of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) was constructed in our previous study. MICs of colistin were determined by the 2-fold serial broth microdilution method. Time-kill and survival assays were carried out with various concentrations of colistin. Growth curves and starvation survival were measured by OD600 or cfu count in LB and M9-glucose (0.2%) minimum media. Quantitative RT-PCR was used to determine the mRNA expression levels of target genes. Results: The results showed that the MIC of colistin for the CpxR-overexpressed strain JSΔacrBΔcpxR::kan/pcpxR was dramatically decreased (0.05 mg/L) by 16-fold compared with JS (0.8 mg/L) and JSΔacrBΔcpxR::kan (0.8 mg/L). Colistin time-kill and survival assays showed that JSΔacrBΔcpxR::kan/pcpxR was more susceptible to colistin (0.05 mg/L), but had a considerably higher survivability regarding prolonged starvation stress compared with JSΔacrBΔcpxR::kan. Furthermore, the expression levels of colistin resistance-related genes (phoP, phoQ, pmrB, pmrC, pmrH and pmrD) were found to be remarkably down-regulated and the negative regulatory protein mgrB was significantly up-regulated. Conclusions: This study demonstrated that CpxR may regulate the colistin susceptibility of Salmonella Typhimurium through the PmrAB and PhoPQ regulatory systems.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Proteínas de Membrana Transportadoras/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Farmacorresistência Bacteriana/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Sorogrupo
16.
Gut Pathog ; 10: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026814

RESUMO

BACKGROUND: Staphylococcus aureus is one of the most prevalent pathogens and a causative agent of a variety of infections in humans and animals. A total of 640 samples were collected from healthy animals and patients from 2013 to 2014 in Henan Province, China, to investigate the prevalence and perform molecular characterization of S. aureus. Antimicrobial resistance and virulence genes were determined and pulsed-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome mec (SCCmec) typing were performed. RESULTS: Overall, 22.3% (n = 143) of the samples were positive for S. aureus. The prevalence of methicillin-resistant S. aureus (MRSA) was 5.59%. Capsular polysaccharide locus type 5 (Cap5; 56.64%) was the dominant serotype. S. aureus strains showed high resistance to penicillin (96.50%), ciprofloxacin (52.45%), amikacin (67.83%), erythromycin (96.50%), lincomycin (97.20%), and tetracycline (68.53%) and 109 (76.2%) isolates harbored six or more tested resistance genes. The most predominant resistance genes were aphA (52.45%), ermC (53.15%), and tetM (52.45%). Eighty-seven (60.8%) isolates harbored six or more tested virulence genes. The most predominant enterotoxin genes were sed (20.28%), sej (20.98%), sep (14.69%), and set (37.76%). The prevalence of lukED gene was (57.34%), and a small number of isolates carried pvl (5.59%) and TSST-1 (2.80%). A total of 130 (82.52%) isolates could be typed by PFGE with SmaI digestion. PFGE demonstrated that 45 different patterns (P) that were grouped into 17 pulsotypes and 28 separate pulsotypes using a 90% cut-off value. A total of 118 (82.52%) isolates were successfully typed by spa, and 26 spa types were identified, t15075 (14.00%) and t189 (12.59%) were the most common types. SCCmec types were detected from eight MRSA isolates, with the most prevalent type being SCCmec IVa. MRSA-SCCmec Iva-t437 was observed in human isolates. CONCLUSION: This study revealed a high prevalence of S. aureus in healthy animals and patients from Henan Province, China. Resistant S. aureus exhibited varying degrees of multidrug resistance. The presence of antibiotic resistance and virulence genes may facilitate the spread of S. aureus strains and pose a potential threat to public health, highlighting the need for vigilant monitoring of these isolates at the human-animal interface.

17.
J Med Microbiol ; 67(6): 733-739, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687766

RESUMO

PURPOSE: The resistance/nodulation/cell division (RND) family multidrug efflux pump, OqxAB, has been identified as one of the leading mechanisms of plasmid-mediated quinolone resistance and has become increasingly prevalent among Enterobacteriaceae in recent years. However, oqxAB genes have not yet been reported in Enterococcus isolates. The aim of the present study was to identify the oqxAB genes and investigate their prevalence among Enterococcus from swine manure in China. METHODOLOGY: The oqxAB genes were screened in 87 Enterococcus isolates by PCR. The transferability of the oqxAB genes in Enterococcus was determined by conjugation experiments. The genetic environment of oqxAB genes was investigated by cloning experiments, PCR mapping and sequencing. RESULTS: A high prevalence (86.2 %) of olaquindox resistance was observed in Enterococcus and 98.9 % isolates exhibited multidrug-resistance phenotypes. The occurrence of oqxA and oqxB in Enterococcus was also high (79.3 and 65.5 %, respectively). Sequence analysis of the cloned fragment indicated that the oqxAB cassette was linked to an incomplete Tn5 transposon containing aph(3')-IIa and flanked by IS26 [IS26-oqxAB-IS26-aph(3')-IIa]. The oqxAB-aph(3')-IIa-positive transconjugant or transformant showed resistance or reduced susceptibility to enrofloxacin, ciprofloxacin, olaquindox, mequindox, florfenicol, neomycin and kanamycin. CONCLUSION: This is the first time that the oqxAB genes have been identified in Enterococcus faecalis from swine manure. The genetic linkage of oqxAB-aph(3')-IIa in Enterococcus has not been described before. The high prevalence of oqxAB genes in Enterococcus suggests that it may constitute a reservoir for oqxAB genes and pose a potential threat to public health.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus/genética , Enterococcus/isolamento & purificação , Esterco/microbiologia , Proteínas de Membrana Transportadoras/genética , Quinoxalinas/farmacologia , Suínos/microbiologia , Animais , Divisão Celular , China , Conjugação Genética , Enrofloxacina , Enterococcus/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Óperon , Plasmídeos , Reação em Cadeia da Polimerase , Quinolonas/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-29435265

RESUMO

Background: The plasmid-encoded multidrug efflux pump oqxAB confers bacterial resistance primarily to olaquindox, quinolones, and chloramphenicol. The aims of this study were to investigate the prevalence of oqxAB among Escherichia coli isolates from dogs, cats, and humans in Henan, China and the susceptibilities of E. coli isolates to common antibiotics. Methods: From 2012 to 2014, a total of 600 samples which included 400 rectal samples and 200 clinical human specimens were tested for the presence of E. coli. All isolates were screened for oqxAB genes by PCR and sequencing. The MICs of 11 antimicrobial agents were determined by the broth microdilution method. A total of 30 representative oqxAB-positive isolates were subjected to ERIC-PCR and MLST. Additionally, conjugation experiments and southern hybridizations were performed. Results: Of 270 isolates, 58.5% (62/106) of the isolates from dogs, 56.25% (36/64) of the isolates from cats, and 42.0% (42/100) of the isolates from humans were positive for the oqxAB. Olaquindox resistance was found for 85.7%-100% of oqxAB-positive isolates. Of oqxAB-positive isolates from dogs, cats, and humans, ciprofloxacin resistance was inspected for 85.8%, 59.1%, and 93.8%, respectively. Several oqxAB-positive isolates were demonstrated by ERIC-PCR and MLST, and have high similarity. Phylogenetic analysis showed that oqxAB-positive isolates could be divided into 7 major clusters. OqxAB-positive conjugants were obtained, southern hybridization verified that the oqxAB gene complex was primarily located on plasmids. Conclusion: In conclusion, oqxAB-positive isolates were widespread in animals and humans in Henan, China. Carriage of oqxAB on plasmids of E. coli isolates may facilitate the emergence of multidrug resistant and its transmission via horizontal transfer, and might pose a potential threat to public health.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Genes MDR/genética , Epidemiologia Molecular , Animais de Estimação/microbiologia , Animais , Antibacterianos/farmacologia , Gatos , China/epidemiologia , Ciprofloxacina/farmacologia , Conjugação Genética , Cães , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Transferência Genética Horizontal , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos , Prevalência
20.
Dev Comp Immunol ; 56: 1-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26586642

RESUMO

Mitochondrial antiviral-signaling protein (MAVS), also called IPS-1/VISA/Cardif, is an important molecule involved in host defense and triggers a signal for producing type I IFN. Currently the function of MAVS in ducks (duMAVS) remains largely unclear while significant progress has been made in mammals. In this study, the full-length duMAVS cDNA was cloned from duck embryo fibroblasts (DEFs) for the first time. Tissue specificity analysis showed duMAVS was universally expressed in all detected tissues. DEFs transfected with duMAVS were able to induce interferon-ß (IFN-ß) expression through activating interferon regulatory factor 1 (IRF1) and nuclear factor kappa B (NF-κB). Both the CARD-like domain and transmembrane domain were required for duMAVS signaling via deletion mutant analysis. In addition, poly(I:C)- or Sendai virus (SeV)-induced IFN-ß expression in DEFs were significantly decreased by knock-down of duMAVS with siRNA. Altogether, these results indicate that MAVS is a critical immunoregulator in duck innate immune system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Aviárias/imunologia , Doenças das Aves/imunologia , Patos , Viroses/veterinária , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Doenças das Aves/virologia , Embrião não Mamífero/citologia , Fibroblastos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon beta/imunologia , Dados de Sequência Molecular , NF-kappa B/metabolismo , Especificidade de Órgãos , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transcrição Gênica , Viroses/imunologia , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...